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Abstract. We present a numerical study of the nonlinear mechanical model
for morphogenesis proposed by Oster et al. (1983) with the aim of establishing
the pattern forming capability of the model. We present a technique for mode
selection based on linear analysis and show that, in many cases, it is a reliable
predictor for nonlinear mode selection. In order to determine the set of model
parameters that can generate a particular pattern we develop a technique
based on nonlinear least square fitting to a dispersion relation. As an applica-
tion we present a scenario for sequential pattern formation of dermal aggrega-
tions in chick embryos which leads to the hexagonal array of cell aggregations
observed in feather germ formation in vivo.

1. Mechanical model and background

A central issue in developmental biology is the formation of spatial pattern and
form in the early embryo. Various models and mechanisms have been proposed
to describe the pattern formation process, such as those based on the reaction-
diffusion theory of Turing (1952) involving chemicals called morphogens (see,
for example, Gierer and Meinhardt (1972), Murray (1977, 1981) and Meinhardt
(1983)). Such models can produce various patterns observed in development;
the existence of morphogens in embryology, however, has yet to be established.

An alternative approach to morphogenetic pattern formation is based on the
mechanochemical interaction of mesenchymal cells with the extracellular matrix
(ECM) — a complex of cross-linked collagen fibres and glycosaminoglycans
(GAGS) — on which they move (see, for example, Oster et al. (1983), Murray
and Oster (1984a, b), Oster et al. (1985)). This new approach to pattern formation
has been applied to several widely studied phenomena in developmental biology,
such as the formation of feather germ primordia in chicks (Sengel (1976),
Davidson (1983a,b), Dhouailly (1983)) and cartilage formation in chick and
amphibian limbs (for example, Wolpert (1981), Maden (1982), Solursh (1983),
Shubin and Alberch (1986)).
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In this paper, by studying nonlinear pattern selection we extend the predictions
of possible spatial patterns in the mechanical model proposed by Oster et al.
(1983). Their analysis, based on linear theory, indicated that stable spatial patterns
would evolve from the full nonlinear system of equations. Here we explicitly
demonstrate a set of such patterns obtained in a variety of parameter regimes.
A key aspect of this paper is the technique used for pattern selection. When a
dispersion relation qualitatively indicates linear growth of a particular wave
number, the selection of the specific parameter values to isolate such a wave
number is not a trivial exercise. This is particularly so when the number of
parameters involved is more than one or two, as is the case with these
mechanochemical models. Here we develop a technique based on nonlinear least
squares fitting to a desired dispersion relation that allows us to isolate particular
wave numbers when the number of parameters is large. We study an example
involving seven parameters. To set the stage for our analysis, we give a brief
introduction to the model equations and refer the reader to the original paper

(Oster et al. (1983)) for fuller details.
The model consists of conservation equations for mesenchymal cell and

extracellular matrix (ECM) densities, n(x, t) and p(x, t) respectively, where x is
the spatial coordinate and ¢ the time. These are coupled with a force balance
equation for the mechanical interaction of cells with the matrix, which determines
the displacement, u(x, t), of a material point of ECM located at position x. We
consider each equation in turn.

Cell conservation equation
The equation for cell density is of the form
on/at=—V - J,+cell division (1.1)
where J, is the cell flux, which consists of several terms:
Diffusion. We take the flux due to random motion to be given by
J gitiusion = — D1 V1.

For simplicity we take D, to be constant. Oster et al. (1983) include a long range
diffusional flux, which is not included here again for simplicity.

Haptotaxis. Cells move by attaching their lamellapodia to specialized adhesive
sites in the ECM. The tendency of cells to move up a gradient in adhesive site
density is known as haptotaxis and is modelled by

_Jhaptotaxis = anvPa
where a is a non-negative constant.

Convection. Cells may be convected by the motion of the matrix with the convective
velocity du/dt. Thus,

Jconvcction =n ay/at
Therefore, the total flux, J,, is given by
Jn = _‘ldiﬁusion + :.Ihaptotaxis + :.]convection . ( 12)
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Cell division. Cell division (mitosis) increases sigmoidally with cell density, and
s0 we qualitatively model this with the simplest term exhibiting such sigmoidal
behaviour, namely the logistic form

mitotic rate = rn(N —n) (1.3)

where r and N are positive constants.
Substituting (1.2) and (1.3) into (1.1) gives the equation for cell conservation.

Force balance equation

As we are dealing with a system with low Reynolds number, inertia terms may
be neglected, and the stress tensor o(x, t) satisfies the force balance equation

V-o+pF=0, (1.4)

where F is an external body force (Purcell (1977)). The stress tensor, o, consists
of two components,

O = O natirix + T cell-matrix * ( 15)
We model the matrix as a linear, isotropic, visco-elastic material with stress tensor

O mawrix = My 080t + u, 80 /0t1+[E/(1+ v)][e+v01/(1—2v)]
viscous elastic

where E is Young’s modulus, w, and u, the shear and bulk viscosities respectively,
» the Poisson ratio, 8 =V - y, the dilatation, € =3V -u+V-u") is the (linear)
strain, and I is the unit tensor.

Mesenchymal cells can exert large traction forces by attaching to the matrix
{Harris et al. 1980). We model the stress due to this cell-matrix interaction by

O cell-matrix = 7(")’1{10 + szp]l,

where 7(n)=7/(1+An”), p=2, is the traction per unit length per cell, and 7, A
and B are positive constants. The 8V’p term accounts for long range traction,
the inclusion of which is required because of the fibrous nature of the ECM. The
form of 7(n) takes into account contact inhibition: as cell density increases, cells
come into contact with each other and their motion is inhibited.

We assume that the cell-matrix composite is attached to some external sub-
stratum (for example the sub-dermal layer in the chick skin) by tethers that may
he modelled by a linear spring. Thus the body force in (1.4) is F=—su(x, 1)
where s is the positive spring constant. Substituting for F and o into (1.4) gives
the force balance equation.

Matrix conservation
The matrix density satisfies the conservation equation
ap/at=—V - J,+matrix secretion by cells (1.6)

where J, is the matrix flux. The matrix moves only when it is deformed due to
cellular traction forces, that is, it moves by convection with velocity du/dt.
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Therefore
J,=pdu/ot

We assume negligible matrix secretion on the time scale we are dealing with.
Substituting for J, into (1.6) gives the matrix conservation equation.

We consider in this paper only the one-dimensional situation and non-
dimensionalize the model equations (1.1), (1.4) and (1.6) by introducing the
quantities
x*=x/L, t*=1/T,, n*=n/N, p*=p/p,, ut*=u/L, A¥=AN?,

ﬁ*:B/Lza 5*=SP0(1+V)L2/E, DT:DlTo/LE,
a*-:apOTO/LZ, r*:rNTO, T*:TPON/Ea o=+ u)(1+2v)/ET,,

where L and T, are typical length and time scales respectively, andp, is a typical
matrix density. The governing equations become, omitting the asterisks for alge-
braic simplicity,

an/at=D, ¥n/ox’—ad/ox(n dujat)—a 8/dx{ndp/ox}+m(1—n) (1.7a)
a/ax[pu u/dx dt+ou/ax+[m/(1+An"){p+B °p/oxD]=sup (1.7b)
dp/ot+a/ax{p du/at}=0. (1.7¢)

These equations were studied in the domain x €[0,1] with periodic boundary
conditions.

In the next section, we discuss the dispersion relation for the linearized system.
Setting various parameters equal to zero gives rise to a wide variety of possible
dispersion relations suggesting a richness in pattern forming capability of the
model. We also describe a method for pattern selection using nonlinear least
squares fitting to a desired dispersion relation. In Sect. 3 we briefly describe the
numerical technique used to compute solutions to (1.7) and present results of
the numerical simulations. We use the results obtained to set up a scenario for
sequential formation of dermal aggregates (papillae) in the chick back (dorsal
ptylera). In Sect. 4 we consider the model in the light of Davidson’s (1983a, b)
experiments on the mechanism of feather development in the dorsal pteryla and
discuss the possibility of using the nonlinear least squares technique for determin-
ing the parameter space wherein a certain mode is selected in general pattern
formation problems.

2. Linear theory of pattern selection

We consider the stability of the biologically relevant steady state
n=p=1, u=90 (2.1)
of (1.7) in the usual way by setting

n=1+n’, p=1+p’, u=u,
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where |n’'|, |p’| and |u’| are small. Substituting into (1.7) and keeping only first
order terms in the primed variables we have a set of linear equations for n’, u’
and p'. We look for solutions of the form

!

n
u' | Cexplo(k)t+ikx].

L

p
The solvability condition gives rise to the dispersion relation
oluk’c?+b(k)o+c(k)]=0, (2.2)
where
b(k)=[uD;+Br/(A+A)Tk*+[1+pr—27/(1+ A1)k +s,
c(k)={mBD,/(Q+A)}k®+{r(1+ ) 7'[rB~D,—a(1-2x/(1+1))]+ D,}k*
+[sD,+r—rr/(1+X)]k*+rs. ‘

Here we have taken the inhibition parameter p =2 (see (1.7b)). When solved this
equation gives the growth rate o as a function of the parameters and the wave
number, k.

Setting different parameters to zero gives rise to a wide selection of dispersion
relations (Murray and Oster (1984a,b); Maini et al. (1984)). The steady state
(2.1) will be unstable to spatial perturbations of wave number, k, if the growth
rate for that k is positive; that is, where Re o(k)>0. On the domain [0, 1], the
steady state (2.1) will then be unstable if there exists an integer n, such that
Re o(2n7) > 0. To isolate the nth mode, we need to choose parameters such that
Re o(2n7) >0 and Re o(2mw) <0 for all other integers m.

Clearly the complicated form of the dispersion relation (2.2) makes the
determination of the parameter space in which a certain mode is isolated very
difficult. We approach this by solving the inverse problem, that is, we choose the
form of the dispersion relation we would like, then fit the actual dispersion
relation to it using a nonlinear least squares package. The routine we used is
based on the Levenberg-Marquardt algorithm (Moré (1977)) and minimizes the
sum of squares of a set of nonlinear functions in n variables. Thus, if we choose
the functional form, y, of the dispersion relation required to isolate a particular
mode, the package chooses values of the parameters {D,, a, r, u, 7, B, 5, A} which
minimizes the objective function

7= § [Re (i) =y(if (23)

that is, it fits Re o to the “idealized” dispersion form y. It is not necessary to
choose a functional form for y, we can simply choose m fictitious ‘““data” points
that mimic the desired shape of the dispersion relation and minimize (2.3). The
best fit may involve negative values of some of the parameters and these values
have no meaning in a biological context. To overcome this problem, we replace
each parameter, x, by f( p,), where f( p;) =0, and then minimize J'(p,,..., p,) =
J(f(pi), ..., f(p,) with respect to p;. For our simulations we chose x; = exp(p;).
Thus even if p; is negative, the biological parameter x; is positive. The exponential
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Fig. 2.1. Illustration of the curve fitting tech-
nique to isolate the k/m =4 mode. We
choose data points such that this mode is
the only unstable permissible mode. The

k

Il curve fitting rqutine fits Re o(k) to these
20 points. The package used minimises the sum
5 L 6 8 of squares of m nonlinear functions in n
0 ' >t Sy — L~ X variables and is based on the Levenberg-
Marquardt algorithm (Moré (1977)). We
- 20+ took m =8, n=17, that is, we set r=0 and
fitted for the remaining seven parameters.
-40- The values of the parameters here are D, =
eo- 02, s=177.8, B=0.0021, =102, p=
0.022, A =196, a=0.026. Computations
-80- were performed on the CRAY1 and CDC

7600 at Los Alamos National Laboratory

has the disadvantage that small changes in p; lead to large changes in x;. Because
only certain ranges of parameter values make biological sense, good initial
parameter guesses and/or choices of fictitious data points, were required to keep
the final values within the relevant range. Absolute minima of the objective
function were not required, only sets of parameters that gave rise to dispersion
relations of the required form. Using this criterion multiple solutions could be
found by different choices of initial parameters or data values. For this problem,
in which a lot of earlier analysis had been done, good initial guesses were easily
found which yielded biologically reasonable final parameter values. Figure 2.1
illustrates the dispersion relation thus obtained to isolate the k/ 7 =4 mode. For
other problems, different choices for f( p;) might be more appropriate. One referee
suggested f( p;) = pi, although this has the disadvantage of generating a singular
Jacobian matrix when p; =0, that is 8J/dp; =2p; 8J/0x;. Algorithms other than
Levenberg-Marquardt in which constraints could be placed on the parameter
search domain could also be tried.

In some cases, depending on the values we choose for the “data points™ y,
the best fit obtained was of the form illustrated in Fig. 2.2. However, since traction
is a destabilizing factor, increasing 7 moves the dispersion relation upwards. The

Fig. 2.2. In some cases the curve fitting
routine was unable to give the shape of the
k dispersion relation required to isolate a

Itx) mode. However, we know from physical

‘ considerations that = moves the dispersion

T Increasing relation vertically, 8 controls the stability

204 / of higher wave number spatial variation and

0 A ? | [( . ? | ? ks controls the stability of lower wave num-

T ber spatial variation. By varying these three

-20 B Increasing para@eters we can convert this ty'pe of dis-

. persion relation into one that isolates a

- 40 $ Increasing mode (as illustrated in Fig.2.1). Thus the

curve fitting routine has reduced the para-

-850 meter search from a seven-dimensional
space to a three-dimensional space
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parameter B measures long range traction and affects the stability of large wave
number spatial variations while varying s, a measure of the elastic (short range)
tethering force, affects the stability of small wave number spatial variations. Thus,
given a dispersion relation of the form illustrated in Fig. 2.2, we can vary these
three parameters to isolate a particular mode.

Although this is a rather crude technique, in view of the large number of
parameters and the complexity of the dispersion relation, the fitting procedure
worked quite well. Occasionally the minimization procedure was trapped in a
local minima not of the prescribed form (for example, Fig. 2.2). Nevertheless,
the procedure reduced the problem from a seven-dimensional parameter space
search to a three-dimensional one (in almost all of these calculations we neglected
cell division setting r=0). By varying only 7, B8 and s and keeping the other
parameters fixed at the values given by the fitting routine, it was possible to
isolate modes.

3. Numerical study of nonlinear pattern selection

(i) Numerical technique

We numerically solved (1.7) with r =0, periodic boundary conditions, and initial
conditions corresponding to u and p at their uniform steady state, u(x,0)=0
and p(x,0) =1, and n randomly perturbed from its steady state, that is n(x, 0) =
1+ 8(x), where 8(x) was picked from a uniform distribution and took values
between —0.05 and 0.05. To do this we used a general purpose PDE solver written
by J. M. Hyman called PDE1D, currently available only at the Los Alamos
National Laboratory. The program uses the method of lines to solve systems of
initial-boundary-value partial differential equations in one space dimension, and
is an updated, expanded and modified version of the publicly available program
MOL1D (Hyman (1979)). Because PDE1D and its higher dimensional analogs
PDE2D and PDE3D are still under development we do not discuss the panoply
of features available in the code.

Equation (1.7b) was not of the general form required by the package, that is

u,=g(x, L,u, Uy, Uy, . ..),

since it contained the derivative u,,,. The spatial part of all derivatives were
represented using a three point, second order finite difterence method. For the
u,,, equation this difference matrix was inverted on each time step to explicitly
define u,. The resulting system of ordinary differential equations in time were
solved by an iterated Runge Kutta Method (RKM). The iterated RKM uses a
nested sequence of Runge Kutta methods of increasing orders to achieve an
accuracy of 1077 per time step. If the error in the solution is greater than the
imposed tolerance, the method recalculates the solution using a higher order
(more accurate) RKM. The procedure is continued until the tolerance criterion
is satisfied (see Hyman 1980 for further details).

The reliability of the numerical method was monitored in various ways. The
solutions were occasionally recalculated in finer meshes and/or with fourth or
sixth order finite differences. The integration in time was also carried out
using Adams-Bashforth-Moulton and Backward Difference Linear Multistep
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integration methods. Different, but equivalent, formulations of the equations
were also solved to ensure the numerical approximations had converged. There
were no constraints in the method to ensure that the total cell number and total
matrix density remained constant. Conservation conditions were monitored to
again check the accuracy of the method.

(ii) Mode selection

Figure 3.1 illustrates the results obtained on solving (1.7) using different sets of
parameters that isolate modes one, two, three and four respectively.

If we choose parameters such that the dispersion relation is complex, linear
analysis predicts a temporally varying solution (travelling waves). Figure 3.2
illustrates the result of simulating the full nonlinear system (1.7) with parameters
such that Re o(27) >0, Re o(2mm) <0 for all other integers, m; Im o(27) #0.

These simulations clearly illustrate the importance of linear analysis in select-
ing parameter spaces wherein spatial patterns may form. Linear analysis, of
course, predicts unbounded temporal growth, and it is the nonlinear terms that
limit this unbounded growth and lead to a steady state. Figure 3.3 illustrates two
cases in which the nonlinearities cannot bound the growth. In Fig. 3.3a the values
of the parameters are identical to those in Fig. 3.1a except that A, the contact
inhibition parameter, is set to zero. Thus the cell traction increases linearily as
cell density increases. Once an aggregate is formed, the traction exerted by the
cells in the aggregate will continue to recruit cells from the surrounding neighbour-
hood leading to the formation of a delta function in cell density. This has important
biological implications in that it indicates the necessity of cell-cell contact
inhibition for stable spatial structures.

In several of the computations, the values of D, and « are very small, and
r=0. Thus the cell density equation is virtually identical to the matrix density
equation — convection is the major form of motion. Therefore we would expect
n and p to be similar. This is clearly illustrated by our results. Thus the stress
due to cell traction may be approximated by

T cell-matrix = [BlTn/(l + )‘np)][n +B azn/axz] (31)

where 3, is some positive constant. If we choose p =2, the first term in o ceii.matrix
asymptotes to 8,7/A for n large, and Brn” for n small. Thus, once an aggregate
is formed, it will continue to exert a constant traction, while the (small) population
of cells nearby exert a traction proportional to the square of the cell density,
which is small. This would lead to unbounded growth in the cell aggregate, unless
the value of @°n/ax” is such that the contribution of this term to & ..;;_maui, balances
the above variation in traction. In Fig. 3.3b this clearly does not happen. If we
increased p, then, for large cell density, the cell traction, which behaves like n*>™?
for large n, would be small and a bounded steady state may exist (Fig. 3.3¢).

(iii) Fast mode selection

In Sect. 2 we mentioned that the dispersion relation gave rise to a wide variety
of behaviours depending on the values of the parameters. On setting certain
parameters to zero, there is the possibility of an infinite linear growth rate for a
particular mode and we would expect fast selection for this mode (Maini et al.
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Fig. 3.1a-d. Steady state solutions for (1.7) in one dimension with r =0. In this case, the parameters
were chosen to isolate a particular mode as described in Sect. 2. In all these simulations the tolerance
for the time integration was 107", a Linear analysis predicts one aggregate. Parameters: D, = « = 0.001,
A=0.12, §=0.015, r=2.3, s=57.32 and p =1.0. Number of grid points (ngrd) =21, time (t) =70.
b Linear analysis predicts two aggregates. Parameters: D, =0.2, a =0.026, A =1.96, B =0.0021,
7=10.2, s=177.8, u=0.022, ngrd =81 and r=15. ¢ Linear analysis predicts three aggregates.
Parameters: D; =« =0.001, A =0.12, 8 =0.001, 7=1.01, s=100.0, © =1.0, ngrd =81 and 1=10. d
Linear analysis predicts four aggregates. Parameters: D, = o =0.001, A =0.12, 8 =0.001, 7=1.65,
5 =400.0, u = 1.0, ngrd = 81 and 1t =200
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Fig. 3.2. Temporally oscillating solution for (1.7) in one dimension with r=0, D, =0.015, a = 0.002,
A=0.5,8=0.006,r=24,s=28.69, u=0.01 and ngrd = 41. In this case, Re ¢(27) >0, Im o (27) # 0.
— =06, -~~~ t=0.85

(1984)). Of course, by making some of the parameters small instead of zero it is
possible to bound the growth rate, but, even so, the maximum (linear) growth
rate is still large. To numerically simulate the full nonlinear system for such
parameter values is difficult because of stiffness problems. Figure 3.4 illustrates
such a dispersion relation and the result of simulating (1.7) with these parameter
values. Clearly the first mode (one aggregate) is selected almost immediately and
grows until the matrix density goes negative, which is, of course, a reflection of
accumulating numerical errors.

(iv) Multiple mode selection

In this paper we have been concentrated on a single mode selection: we chose
parameters such that linear analysis predicted only one permissible unstable
mode. An interesting problem is to consider the situation where more than one
mode is unstable and to investigate what mode, if any, will be selected.

(v) Sequential formation of two-dimensional patterns

One of the motivations for studying the ability of the model to generate pattern
sequentially comes from the results of Davidson’s (1983) experiments on dermal
cell aggregation. Leaving aside the controversial problem of which aggregate
forms first — the epidermal placode or the dermal papilla — it appears that the
first dermal aggregate forms approximately in the centre of the dorsal midline
on the chick back. Two further aggregates then form, one on either side of this
initial aggregation, also along the dorsal midline. More aggregates then form on
either side of the dorsal midline but displaced longitudinally from those on the
dorsal midline to give an hexagonal pattern of papillae. The “wave” of aggrega-
tions then spreads out forming a regular hexagonal pattern. Although the initial
row is not necessary for the formation of subsequent neighbouring rows it does
determine the position of the subsequent papillae.

As cells mature, their mechanical properties change. For example, the traction
exerted by mesenchymal cells in vitro can increase dramatically over a period of
a few days (Harris, personal communication). Suppose that in a given domain
the cell tractions are as shown in Fig. 3.5a; that is, the central cells have aged to
the point where they have commenced to contract with a force 7, while the
peripheral cells have not yet matured to the contraction stage. Then, as shown
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Fig. 3.3. a Linear analysis predicts one aggregate. The parameters are identical to those in Fig.3.1a
except that A = 0. Thus there is no cell-cell contact inhibition and the traction exerted by the growing
aggregation pulls surrounding cells into the aggregate leading to a delta function in cell density, n.
b Linear analysis predicts the formation of one aggregate on the unit interval. In this case, there is
efectively no contact inhibition (see text for detail). Parameters are D, = a = 0.001, A = 0.12, 8 =0.015,
7=3.0, s=57.32, u=1.0, ngrd =101 and ¢=10. ¢ In this case, traction/cell (r(n))=7n/(1+An%)
and contact inhibition is strong enough to bound the cell aggregates (see text for detail). Parameters
are identical to (a) except A =0.1, ngrd = 31. The result is shown for time ¢ = 1000

in Fig. 3.5c, a single, centrally located aggregation of cells will accumulate. If
this aggregation is stabilized by subsequent developmental processes, then as the
peripheral cells mature and commence contracting an additional two peaks will
appear as shown in Fig. 3.5¢. In this way, a single peak will lead to three equally
spaced aggregates. Thus the model can explain the formation of the initial row

of feather germs.
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Fig. 3.4a-e. Fast mode selection. a Dispersion relation for parameters p =4, D, =0.05, a =0.0,
A=0.5, B=0.01, 7=4.0, s=0.0, ©=0.01, r=1.0. b Result of simulation at t=0.5 (ngrd =21).
Clearly the first mode has been selected very quickly. ¢ At 1= 1.2, the matrix density, p, goes negative.
d With parameters D,=02, r=10, B=001, 7=12, u=001, p=2, A=00=s5=aq,
the real part of the dispersion relation is qualitatively similar to a, but now there is an imaginary
part such that Im o(2/7) # 0. In this case we have a growing, travelling aggregate e (number of grid
points = 101). These simulations encountered stifiness difficulties and took roughly 1/2 million time
steps and over 30 minutes CRAY time

The simulations in Fig. 3.6a, b provide strong evidence for the idea that this
initial row sets up a strain field which guides cell aggregations in the secondary
rows to occur at locations between the original aggregations. Figure 3.6c illustrates
how such a scenario could lead to two-dimensional hexagonal patterns. Simula-
tions of the model in two spatial dimensions could be used to establish this more
rigorously.

4. Discussion

In previous publications (Oster et al. (1983), Murray and Oster (1984a, b), Maini
et al. (1984)) we performed a linear study of the mechanical model described in
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particular pattern remains a challenging problem. Murray (1982) investigated
this problem with respect to reaction diffusion mechanisms which generate spatial
patterns. Perhaps parameter estimation techniques will provide a window through
which one can gain insights into this problem in general.
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